
Parametric control on fractional-order response for Lü chaotic system
This paper discusses the influence of the fractional order parameter on conventional chaotic systems. These fractional-order parameters increase the system degree of freedom allowing it to enter new domains and thus it can be used as a control for such dynamical systems. This paper investigates the behaviour of the equally-fractional-order Lü chaotic system when changing the fractional-order parameter and determines the fractional-order ranges for chaotic behaviour. Five different parameter values and six fractional-order cases are discussed through this paper. Unlike the conventional

A novel chaotic system without equilibrium: Dynamics, synchronization, and circuit realization
A few special chaotic systems without unstable equilibrium points have been investigated recently. It is worth noting that these special systems are different from normal chaotic ones because the classical Shilnikov criterion cannot be used to prove chaos of such systems. A novel unusual chaotic system without equilibrium is proposed in this work. We discover dynamical properties as well as the synchronization of the new system. Furthermore, a physical realization of the system without equilibrium is also implemented to illustrate its feasibility. © 2017 Ahmad Taher Azar et al.

Variability of supercapacitor fractional-order parameters extracted from discharging behavior using least squares optimization
In this paper the variability of supercapacitor fractional-order model parameters are explored when extracted using a non-linear least squares optimization applied to their constant current discharging behaviour. The variability of parameters extracted 1000 different times applying the optimization process to multiple sets of simulated and experimental data are presented to validate this approach. The experimental results were collected from 4 samples of Panasonic EEC-SSR5H105 supercapacitors (1 F rating) acting as a secondary power source for an Arduino Uno system. Simulations using the
Fractional-order mihalas-niebur neuron model implementation using current-mirrors
A simple realization of the fractional-order Mihalas-Niebur neuron model is presented in this work. The required low-pass filter is implemented using current-mirrors offering simple circuitry and, also, electronic tunability of the realized time-constant. Due to the limited bandwidth required for this application, the necessary fractional-order capacitor is realized using an appropriately configured second-order RC network. The proposed realization highlights the connection between the fractional-order and the frequency spiking of the model through appropriate simulation results, which are
Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices
In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage to the terminal voltage [Formula: see text]) and p ([Formula: see text]) act as two variable parameters. We used this history-dependence of the dynamic behavior of the device to uniquely retrieve

Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules
Functional dye molecules, such as porphyrins, attached to CdSe quantum dots (QDs) through anchoring meso-pyridyl substituents, form quasi-stable nanoassemblies. This fact results in photoluminescence (PL) quenching of the QDs both due to Förster resonance energy transfer (FRET) and the formation of non-radiative surface states under conditions of quantum confinement (non-FRET). The formation process is in competition with the ligand dynamics. At least two timescales are found for the formation of the assemblies: 1) one faster than 60 s attributed to saturation of empty attachment sites and 2)
CdS nanowires encapsulated liquid crystal in-plane switching of LCD device
Well-defined ultra-thin ‘wire’ like cadmium sulfide (CdS) nanostructures have been synthesized by applying simple cost-effective hydrothermal route. The content of nanostructures modifies the nature of surface interaction between two liquid crystal (LC) components as revealed by optical and electrical investigation. Those synthesized nanowires have an average diameter of about 7–10 nm and length up to several micrometers region. A possible mechanism has been proposed and the addition of cataionic surfactant cetyltrimethylammonium bromide (CTAB) into the two mixed-solvents would play an
Multifunction fractional inverse filter based on otra
This paper proposes a generalized topology of a fractional-order inverse filter (FOF) using operational transresistance amplifiers (OTRA) block. Seven different configurations are extracted from the introduced topology employing generalized admittances. The generalized admittances increase the flexibility to provide different types of FOFs such as inverse fractional high pass filter (FHPF), inverse fractional low pass filter (FLPF), inverse fractional bandpass filter (FBPF), and inverse fractional notch filter (FNF). Numerical and PSPICE simulation results are presented for selected cases to

A fast locking hybrid TDC-BB ADPLL utilizing proportional derivative digital loop filter and power gated DCO
A hybrid Time to Digital Converter (TDC) - Bang Bang (BB) All Digital Phase Locked Loop (ADPLL) architecture is proposed to optimize power, area, lock time, and design complexity. The Hybrid ADPLL architecture utilizes a low resolution two synthesizable Time to Digital Converters to achieve fast lock time, and then switches to a Bang-Bang like architecture once it is in the locked state. Such hybrid architecture enables the ADPLL to achieve lock time in less than 1 μ sec using an adaptive proportional derivative digital loop filter while consuming a power of 5.1 mW when locked at 4GHz with 1
Fractional-Order Control Scheme for Q-S Chaos Synchronization
In this paper, a fast control scheme is presented for the problem of Q-S synchronization between fractional chaotic systems with different dimensions and orders. Using robust control law and Laplace transform, a synchronization approach is designed to achieve Q-S synchronization between n-D and m-D fractional-order chaotic systems in arbitrary dimension d. This paper provides further contribution to the topic of Q-S synchronization between fractional-order systems with different dimensions and introduces a general control scheme that can be applied to wide classes of fractional chaotic and
Pagination
- Previous page ‹‹
- Page 45
- Next page ››